Compare commits
2 Commits
main
...
3ab553fb6d
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3ab553fb6d | ||
|
|
941eae5d57 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -231,3 +231,4 @@ Thumbs.db
|
||||
# experiment garbage
|
||||
|
||||
*.png
|
||||
src/calib_info.json
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import json
|
||||
import time
|
||||
import timeit
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
@@ -8,6 +10,8 @@ from loguru import logger
|
||||
from .waytools import capActiveWindow, focusWindow, moveMouse
|
||||
from .waytools import sendKey as _sendKey
|
||||
|
||||
# TODO: Consider type hinting images from cv2.typing import MatLike
|
||||
|
||||
|
||||
class DFWINDOW:
|
||||
class TOOLS:
|
||||
@@ -29,24 +33,24 @@ class DFWINDOW:
|
||||
) -> tuple[int, int]:
|
||||
# Check the first (num_rows) rows at the top of the image,
|
||||
# ignoring (ignore_cols) number of pixels at each end of teh line.
|
||||
test_mean = np.mean(
|
||||
test_max = np.max(
|
||||
cv2.cvtColor(image_in[0:num_rows, ignore_cols:-ignore_cols], cv2.COLOR_BGR2GRAY),
|
||||
axis=1, # get the mean along the x-axis
|
||||
)
|
||||
# TODO: handle when 0 results return
|
||||
# Test the mean darkness, get the first row darker than 4
|
||||
content_y = np.where(test_mean < mean_threshold)[0][0]
|
||||
content_y = np.where(test_max < mean_threshold)[0][0]
|
||||
|
||||
_ignore_rows = max(ignore_rows, content_y + 1)
|
||||
test_mean = np.mean(
|
||||
test_max = np.max(
|
||||
cv2.cvtColor(image_in[_ignore_rows:-_ignore_rows, 0:num_cols], cv2.COLOR_BGR2GRAY),
|
||||
axis=0, # get the mean along the y-axis
|
||||
)
|
||||
content_x = np.where(test_mean < mean_threshold)[0][0]
|
||||
content_x = np.where(test_max < mean_threshold)[0][0]
|
||||
|
||||
logger.debug(f"Content origin ({content_x}, {content_y})")
|
||||
|
||||
return (content_x, content_y)
|
||||
return (int(content_x), int(content_y))
|
||||
|
||||
@staticmethod
|
||||
def isRightBorder(img, num_columns=20, border_threshold: int = 10) -> bool:
|
||||
@@ -58,6 +62,20 @@ class DFWINDOW:
|
||||
# Are all pixels in the strip "black"
|
||||
return not np.any(thresh)
|
||||
|
||||
@staticmethod
|
||||
def getImageDiff(image1, image2, conversion=cv2.COLOR_BGR2GRAY) -> float:
|
||||
# Diff size, very dif img
|
||||
if image1.shape != image2.shape:
|
||||
return float("inf")
|
||||
grey1 = cv2.cvtColor(image1, conversion)
|
||||
grey2 = cv2.cvtColor(image2, conversion)
|
||||
|
||||
# Apparently this is the Mean Squared Error (MES). Thanks Gemini (LLM)
|
||||
err = np.sum((grey1.astype("float") - grey2.astype("float")) ** 2)
|
||||
err /= float(grey1.shape[0] * grey1.shape[0])
|
||||
|
||||
return float(err)
|
||||
|
||||
@staticmethod
|
||||
def isLeftBorder(img, num_columns=20, border_threshold: int = 10) -> bool:
|
||||
# grab a greyscale strip to look at
|
||||
@@ -89,20 +107,30 @@ class DFWINDOW:
|
||||
return not np.any(thresh)
|
||||
|
||||
@staticmethod
|
||||
def firstNotBlackX(img):
|
||||
first_x = np.where(np.mean(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=0) > 15)[0][0]
|
||||
return first_x
|
||||
def firstNotBlackX(img) -> int:
|
||||
first_x = np.where(np.max(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=0) > 5)[0][0]
|
||||
return int(first_x)
|
||||
|
||||
@staticmethod
|
||||
def firstNotBlackY(img):
|
||||
first_y = np.where(np.mean(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=1) > 15)[0][0]
|
||||
return first_y
|
||||
def lastNotBlackX(img) -> int:
|
||||
first_x = np.where(np.max(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=0) > 5)[0][-1]
|
||||
return int(first_x)
|
||||
|
||||
bottom_to_ignore = 120
|
||||
sleep_after_mouse = 0.2
|
||||
sleep_after_key = 0.08
|
||||
sleep_after_focus = 0.3
|
||||
sleep_after_panning = 0.3
|
||||
@staticmethod
|
||||
def firstNotBlackY(img) -> int:
|
||||
first_y = np.where(np.max(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=1) > 5)[0][0]
|
||||
return int(first_y)
|
||||
|
||||
@staticmethod
|
||||
def lastNotBlackY(img) -> int:
|
||||
first_y = np.where(np.max(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), axis=1) > 5)[0][-1]
|
||||
return int(first_y)
|
||||
|
||||
bottom_to_ignore = 160
|
||||
sleep_after_mouse = 0.2 # 2
|
||||
sleep_after_key = 0.08 # 08
|
||||
sleep_after_focus = 0.2 # 3
|
||||
sleep_after_panning = 0.2 # 3
|
||||
query_for_window = "dwarfort"
|
||||
|
||||
def __init__(self) -> None:
|
||||
@@ -224,8 +252,8 @@ class DFWINDOW:
|
||||
self.sendKeys("a", 30)
|
||||
img = self.capWindow()
|
||||
self._content_left, self._content_top = self.TOOLS.find_content_origin(img)
|
||||
self._content_right = img.shape[1] - self._content_left
|
||||
self._content_bottom = img.shape[0] - self.bottom_to_ignore
|
||||
self._content_right = int(img.shape[1] - self._content_left)
|
||||
self._content_bottom = int(img.shape[0] - self.bottom_to_ignore)
|
||||
img = img[self._content_top : self._content_bottom, self._content_left : self._content_right] # pyright: ignore[reportOptionalSubscript]
|
||||
logger.debug(f"Content width {self.contentWidth}. Content height {self.contentHeight}.")
|
||||
|
||||
@@ -239,8 +267,8 @@ class DFWINDOW:
|
||||
img = self.capContent()
|
||||
mx2 = self.TOOLS.firstNotBlackX(img)
|
||||
my2 = self.TOOLS.firstNotBlackY(img)
|
||||
self._step_size_x = mx2 - mx1
|
||||
self._step_size_y = my2 - my1
|
||||
self._step_size_x = mx1 - mx2
|
||||
self._step_size_y = my1 - my2
|
||||
logger.info(f"Step sizes calculated: x={self._step_size_x} and y={self._step_size_y}")
|
||||
self.sendKeys("w")
|
||||
self.sendKeys("a")
|
||||
@@ -303,13 +331,6 @@ class DFWINDOW:
|
||||
self._gridx = steps_right
|
||||
self._gridy = steps_down
|
||||
|
||||
# TODO: Use seek tests to calculate mapsize in pixels
|
||||
# at (0,0) save left_edge_offset and top_edge_offset
|
||||
# at (max,max) save right_edge_offset and bottom_edge_offset
|
||||
# width = (contentWidth - l_e_o) + (gridyx_max * _step_size_x) - abs(r_e_o)
|
||||
# | <==|====|====|==> |
|
||||
# (max*size) is too far, so we subract the ofset/border from the right map edge
|
||||
|
||||
# Test going to 0,0
|
||||
self.setGridPos(0, 0)
|
||||
time.sleep(self.sleep_after_panning)
|
||||
@@ -318,6 +339,9 @@ class DFWINDOW:
|
||||
logger.debug("Calibration error. Not at requested upper left of map")
|
||||
raise Exception("Calibration error. Not at requested upper left of map")
|
||||
|
||||
cal_left_border = self.TOOLS.firstNotBlackX(img)
|
||||
cal_top_border = self.TOOLS.firstNotBlackY(img)
|
||||
|
||||
# Test going to (max,max)
|
||||
self.setGridPos(self.maxGridX, self.maxGridY)
|
||||
time.sleep(self.sleep_after_panning)
|
||||
@@ -326,31 +350,117 @@ class DFWINDOW:
|
||||
logger.debug("Calibration error. Not at requested lower right of map")
|
||||
raise Exception("Calibration error. Not at requested lower right of map")
|
||||
|
||||
cal_right_border = self.TOOLS.lastNotBlackX(img)
|
||||
cal_bottom_border = self.TOOLS.lastNotBlackY(img)
|
||||
|
||||
# TODO: Use seek tests to calculate mapsize in pixels
|
||||
# at (0,0) save left_edge_offset and top_edge_offset
|
||||
# at (max,max) save right_edge_offset and bottom_edge_offset
|
||||
# width = (contentWidth - l_e_o) + (gridyx_max * _step_size_x) - abs(r_e_o)
|
||||
# | <==|====|====|==> |
|
||||
# (max*size) is too far, so we subract the ofset/border from the right map edge
|
||||
|
||||
self._map_width = (
|
||||
(img.shape[1] - cal_left_border) # Grid x = 0
|
||||
+ ((self._gridx_max - 1) * self._step_size_x) # All the middle
|
||||
+ cal_right_border # grid x = max
|
||||
)
|
||||
|
||||
self._map_height = (
|
||||
(img.shape[0] - cal_top_border) # Grid x = 0
|
||||
+ ((self._gridy_max - 1) * self._step_size_y) # All the middle
|
||||
+ cal_right_border # grid x = max
|
||||
)
|
||||
|
||||
self.setGridPos(0, 0)
|
||||
|
||||
logger.debug(f"Map dimensions calculated as {self._map_width} x {self._map_height}")
|
||||
|
||||
logger.info(
|
||||
f"Grid calibration complete. Grid steps ({self._gridy_max + 1},{self._gridy_max + 1}), step sizes({self._step_size_x},{self._step_size_y})"
|
||||
)
|
||||
|
||||
def test1(self):
|
||||
# rawimg = cv2.imread("./test_img.png")
|
||||
rawimg = cv2.imread("grid_base_3.png")
|
||||
img = rawimg[100 : -self.bottom_to_ignore - 70, 65:-65]
|
||||
tlb = self.TOOLS.firstNotBlackX(img)
|
||||
ttb = self.TOOLS.firstNotBlackY(img)
|
||||
|
||||
tt_setup = (
|
||||
r"gc.enable() ; import cv2 ; import numpy as np ; timg = cv2.imread('./test_img.png', cv2.IMREAD_UNCHANGED)"
|
||||
)
|
||||
tt1 = timeit.Timer(
|
||||
"np.where(np.mean(cv2.cvtColor(timg, cv2.COLOR_BGR2GRAY), axis=0) > 15)[0][0]",
|
||||
setup=tt_setup,
|
||||
)
|
||||
tt2 = timeit.Timer(
|
||||
"np.where(np.max(cv2.cvtColor(timg, cv2.COLOR_BGR2GRAY), axis=0) > 25)[0][0]",
|
||||
setup=tt_setup,
|
||||
)
|
||||
tt3 = timeit.Timer(
|
||||
"np.where(np.max(cv2.cvtColor(timg, cv2.COLOR_BGRA2GRAY), axis=0) > 25)[0][0]",
|
||||
setup=tt_setup,
|
||||
)
|
||||
|
||||
num_tests = 80
|
||||
r1 = tt1.timeit(number=num_tests)
|
||||
r2 = tt2.timeit(number=num_tests)
|
||||
r3 = tt3.timeit(number=num_tests)
|
||||
|
||||
logger.debug("Pause here for testing")
|
||||
|
||||
def test_saveGrids(self):
|
||||
savedir = Path()
|
||||
savefile_base = "cached_grid"
|
||||
savefile_ext = "png"
|
||||
for x in range(0, self._gridx_max + 1):
|
||||
for y in range(0, self._gridy_max):
|
||||
self.setGridPos(x, y)
|
||||
time.sleep(self.sleep_after_panning)
|
||||
img = self.capContent()
|
||||
savefilename = savedir.joinpath(f"{savefile_base}_{x}_{y}.{savefile_ext}")
|
||||
cv2.imwrite(str(savefilename.resolve()), img)
|
||||
calib_info = {
|
||||
"gridx": int(self._gridx),
|
||||
"gridy": int(self._gridy),
|
||||
"gridx_max": int(self._gridx_max),
|
||||
"gridy_max": int(self._gridy_max),
|
||||
"step_size_x": int(self._step_size_x),
|
||||
"step_size_y": int(self._step_size_y),
|
||||
"content_top": int(self._content_top),
|
||||
"content_bottom": int(self._content_bottom),
|
||||
"content_left": int(self._content_left),
|
||||
"content_right": int(self._content_right),
|
||||
"map_height": int(self._map_height),
|
||||
"map_width": int(self._map_width),
|
||||
}
|
||||
with open("./calib_info.json", "w") as fh:
|
||||
json.dump(calib_info, fh)
|
||||
|
||||
def test_loadCalib(self):
|
||||
with open("./calib_info.json") as fh:
|
||||
calib_info = json.load(fh)
|
||||
|
||||
self._gridx = calib_info["gridx"]
|
||||
self._gridy = calib_info["gridy"]
|
||||
self._gridx_max = calib_info["gridx_max"]
|
||||
self._gridy_max = calib_info["gridy_max"]
|
||||
self._step_size_x = calib_info["step_size_x"]
|
||||
self._step_size_y = calib_info["step_size_y"]
|
||||
self._content_top = calib_info["content_top"]
|
||||
self._content_bottom = calib_info["content_bottom"]
|
||||
self._content_left = calib_info["content_left"]
|
||||
self._content_right = calib_info["content_right"]
|
||||
self._map_height = calib_info["map_height"]
|
||||
self._map_width = calib_info["map_width"]
|
||||
|
||||
def getPanoramaMap(self):
|
||||
# self.test1()
|
||||
# return
|
||||
|
||||
self.calibrateGrid()
|
||||
|
||||
# Test getting pieces and stitching
|
||||
stitcher = cv2.Stitcher.create(cv2.STITCHER_SCANS)
|
||||
stitcher.setPanoConfidenceThresh(0.1) # Dont be confident
|
||||
|
||||
imgs_in_row = []
|
||||
|
||||
# Get a row
|
||||
self.setGridPos(0, 0)
|
||||
time.sleep(self.sleep_after_panning)
|
||||
for x in range(0, self.maxGridX + 1, 3):
|
||||
self.setGridPos(x, self.curGridY)
|
||||
time.sleep(self.sleep_after_panning)
|
||||
img = self.capContent()
|
||||
if img.shape[2] == 4:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
|
||||
imgs_in_row.append(img)
|
||||
|
||||
status, strip = stitcher.stitch(imgs_in_row)
|
||||
logger.debug(f"{len(imgs_in_row)} images. {status=} {strip=} {status == cv2.Stitcher_OK}")
|
||||
# self.test_saveGrids()
|
||||
# self.test_loadCalib()
|
||||
|
||||
return None
|
||||
|
||||
Reference in New Issue
Block a user